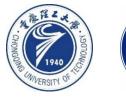


A Simple Framework for Graph Contrastive Learning without Data Augmentation

Jun Xia^{1,2,3†}, Lirong Wu^{1,2†}, Jintao Chen³, Bozhen Hu^{1,2}, Stan Z.Li^{1,2★} ¹ School of Engineering, Westlake University, Hangzhou 310030, China ² Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310030, China ³ Zhejiang University, Hangzhou 310058, China {xiajun,wulirong,hubozhen,stan.zq.li}@westlake.edu.cn,chenjintao@zju.edu.cn

> WWW 2022 Code: github.com/junxia97/simgrace

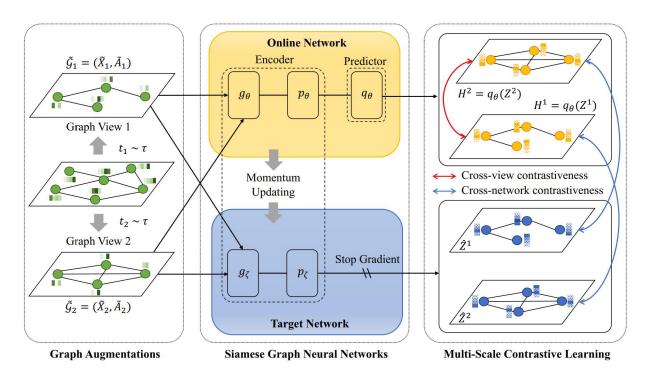
> > 2022.04.10 • ChongQing

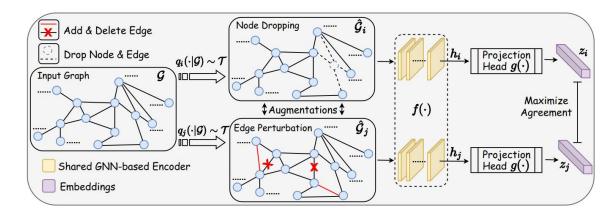


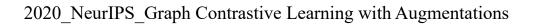
Reported by Chenghong Li

Introduction

• It is difficult to preserve semantics well during augmentations in view of the diverse nature of graph data.







2021_IJCAI_Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning

Introduction

Table 1: Comparison between state-of-the-art GCL methods (graph-level representation learning) and SimGRACE.

	No manual trial-and-errors	No domain knowledge	Preserving semantics	No cumbersome search	Generality
GraphCL [54]	×	✓	×	✓	×
MoCL [40]	\checkmark	×	\checkmark	\checkmark	×
JOAO(v2) [53]	\checkmark	\checkmark	×	×	\checkmark
SimGRACE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Method

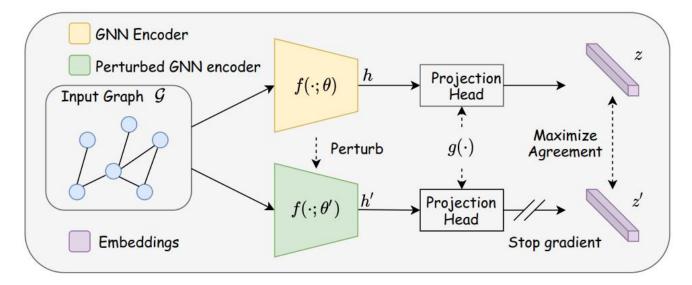
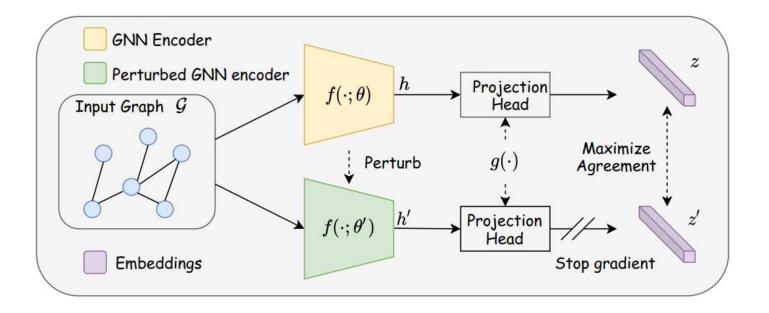


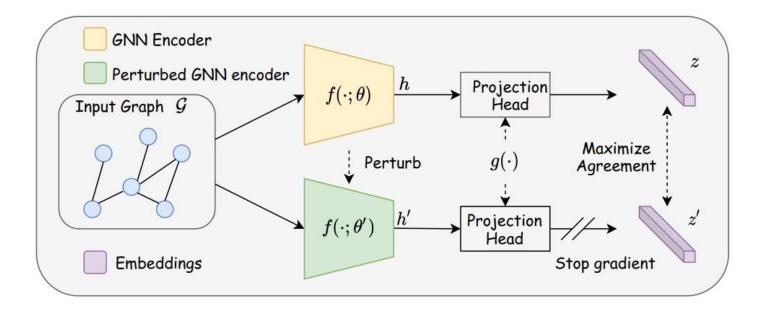
Figure 2: Illustration of SimGRACE, a simple framework of graph contrastive learning. Instead of augmenting the graph data, we feed the original graph G into a GNN encoder $f(\cdot; \theta)$ and its perturbed version $f(\cdot; \theta')$. After passing a shared projection head $g(\cdot)$, we maximize the agreement between representations z_i and z_j via a contrastive loss.



 $\mathbf{h} = f(\mathcal{G}; \boldsymbol{\theta}), \mathbf{h}' = f(\mathcal{G}; \boldsymbol{\theta}'). \tag{1} \qquad z = g(\mathbf{h}), z' = g(\mathbf{h}'). \tag{3}$

$$\boldsymbol{\theta}_{l}^{\prime} = \boldsymbol{\theta}_{l} + \eta \cdot \Delta \boldsymbol{\theta}_{l}; \quad \Delta \boldsymbol{\theta}_{l} \sim \mathcal{N}\left(0, \sigma_{l}^{2}\right), \quad (2) \quad \boldsymbol{\ell}_{n} = -\log \frac{\exp\left(\sin\left(\boldsymbol{z}_{n}, \boldsymbol{z}_{n}^{\prime}\right)/\tau\right)}{\sum_{n^{\prime}=1, n^{\prime}\neq n}^{N} \exp\left(\sin\left(\boldsymbol{z}_{n}, \boldsymbol{z}_{n^{\prime}}\right)/\tau\right)}, \quad (4)$$

Method



AT-SimGRACE

$$\min_{\boldsymbol{\theta}} \mathcal{L}'(\boldsymbol{\theta}), \quad \text{where} \quad \mathcal{L}'(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \max_{\|\mathbf{x}'_i - \mathbf{x}_i\|_p \le \epsilon} \ell'_i \left(f\left(\mathbf{x}'_i; \boldsymbol{\theta}\right), y_i \right),$$
(8)

$$\mathbf{R}(\mathbf{w};\epsilon) \coloneqq \{\boldsymbol{\theta} \in \boldsymbol{\Theta} : \|\boldsymbol{\theta} - \mathbf{w}\| \le \epsilon\},\tag{9}$$

where
$$\mathcal{L}(\theta + \Delta) = \frac{1}{M} \sum_{i=1}^{M} \max_{\Delta \in \mathbb{R}(0;\epsilon)} \ell_i \left(f\left(\mathcal{G}_i; \theta + \Delta\right), f\left(\mathcal{G}_i; \theta\right) \right),$$
(10)

Table 2: Comparing classification accuracy with baselines under the same experiment setting. The top three accuracy or rank for each dataset are emphasized in bold. A.R. denotes average rank. - indicates that results are not available in published papers.

Methods	NCI1	PROTEINS	DD	MUTAG	COLLAB	RDT-B	RDT-M5K	IMDB-B	A.R . ↓
GL	_	-	_	81.66 ± 2.11	-	77.34 ± 0.18	41.01 ± 0.17	65.87 ± 0.98	8.3
WL	80.01 ± 0.50	72.92 ± 0.56	_	80.72 ± 3.00	-	68.82 ± 0.41	46.06 ± 0.21	72.30 ± 3.44	6.2
DGK	80.31 ± 0.46	73.30 ± 0.82	—	87.44 ± 2.72	-	78.04 ± 0.39	41.27 ± 0.18	66.96 ± 0.56	5.5
node2vec	54.89 ± 1.61	57.49 ± 3.57	-	72.63 ± 10.20	-	-	12 1	-	9.0
sub2vec	52.84 ± 1.47	53.03 ± 5.55	—	61.05 ± 15.80	-	71.48 ± 0.41	36.68 ± 0.42	55.26 ± 1.54	10.2
graph2vec	73.22 ± 1.81	73.30 ± 2.05	-	83.15 ± 9.25	-	75.78 ± 1.03	47.86 ± 0.26	71.10 ± 0.54	6.7
MVGRL	-	—	—	75.40 ± 7.80	-	82.00 ± 1.10	—	63.60 ± 4.20	8.3
InfoGraph	76.20 ± 1.06	74.44 ± 0.31	72.85 ± 1.78	89.01 ± 1.13	70.65 ± 1.13	82.50 ± 1.42	53.46 ± 1.03	$\textbf{73.03} \pm 0.87$	3.8
GraphCL	77.87 ± 0.41	74.39 ± 0.45	78.62 ± 0.40	86.80 ± 1.34	71.36 ± 1.15	89.53 ± 0.84	55.99 ± 0.28	71.14 ± 0.44	3.1
JOAO	78.07 ± 0.47	74.55 ± 0.41	77.32 ± 0.54	87.35 ± 1.02	69.50 ± 0.36	85.29 ± 1.35	55.74 ± 0.63	70.21 ± 3.08	4.3
JOAOv2	78.36 ± 0.53	74.07 ± 1.10	77.40 ± 1.15	87.67 ± 0.79	69.33 ± 0.34	86.42 ± 1.45	56.03 ± 0.27	70.83 ± 0.25	3.6
SimGRACE	79.12 ± 0.44	$\textbf{75.35} \pm 0.09$	77.44 ± 1.11	89.01 ± 1.31	$\textbf{71.72} \pm 0.82$	$\textbf{89.51} \pm 0.89$	$\textbf{55.91} \pm 0.34$	71.30 ± 0.77	2.0

Table 4: Comparing classification accuracy with baselines under the same semi-supervised setting. The top three accuracy or rank are emphasized in bold. – indicates that label rate is too low for a given dataset size. L.R. and A.R. are short for label rate and average rank, respectively.

L.R.	Methods	NCI1	PROTEINS	DD	COLLAB	RDT-B	RDT-M5K	A.R. ↓
	No pre-train.	60.72 ± 0.45	-		57.46 ± 0.25	3 <u></u>		8.5
	Augmentations	60.49 ± 0.46	_	-	58.40 ± 0.97	—	-	8.0
	GAE	61.63 ± 0.84	_		63.20 ± 0.67	_	_	5.5
	Infomax	62.72 ± 0.65	-	-	61.70 ± 0.77	_	_	4.0
1%	ContextPred	61.21 ± 0.77	—	_	57.60 ± 2.07	2 -3		7.5
	GraphCL	62.55 ± 0.86	_	_	64.57 ± 1.15	—	_	2.0
	JOAO	61.97 ± 0.72		_	63.71 ± 0.84		-	4.5
	JOAOv2	62.52 ± 1.16	-	-	64.51 ± 2.21	_	_	3.0
	SimGRACE	64.21 ± 0.65	-	-	64.28 ± 0.98	_	_	2.0
	No pre-train.	73.72 ± 0.24	70.40 ± 1.54	73.56 ± 0.41	73.71 ± 0.27	86.63 ± 0.27	51.33 ± 0.44	7.7
	Augmentations	73.59 ± 0.32	70.29 ± 0.64	74.30 ± 0.81	74.19 ± 0.13	87.74 ± 0.39	52.01 ± 0.20	7.0
	GAE	74.36 ± 0.24	70.51 ± 0.17	74.54 ± 0.68	75.09 ± 0.19	87.69 ± 0.40	33.58 ± 0.13	6.3
	Infomax	74.86± 0.26	72.27 ± 0.40	75.78 ± 0.34	73.76 ± 0.29	88.66 ± 0.95	$\textbf{53.61} \pm 0.31$	3.7
10%	ContextPred	73.00 ± 0.30	70.23 ± 0.63	74.66 ± 0.51	73.69 ± 0.37	84.76 ± 0.52	51.23 ± 0.84	8.3
	GraphCL	74.63 ± 0.25	74.17 ± 0.34	76.17± 1.37	74.23 ± 0.21	89.11± 0.19	52.55 ± 0.45	2.8
	JOAO	74.48 ± 0.27	72.13 ± 0.92	75.69 ± 0.67	75.30 ± 0.32	88.14 ± 0.25	52.83 ± 0.54	4.2
	JOAOv2	74.86± 0.39	73.31 ± 0.48	75.81± 0.73	75.53 ± 0.18	88.79 ± 0.65	52.71 ± 0.28	2.5
	SimGRACE	74.60 ± 0.41	74.03 ± 0.51	76.48 ± 0.52	74.74 ± 0.28	88.86 ± 0.62	53.97 ± 0.64	2.3

Table 3: Transfer learning comparison with other pretraining schemes. The top-3 accuracy for each dataset are emphasized in bold.

Pre-Train dataset	PPI-306K		ZINC 2M	
Fine-Tune dataset	PPI	BBBP	ToxCast	SIDER
No Pre-Train	64.8 ± 1.0	65.8 ± 4.5	63.4 ± 0.6	57.3 ± 1.6
EdgePred	65.7 ± 1.3	68.8 ± 0.8	62.7 ± 0.4	58.4 ± 0.8
AttrMasking	65.2 ± 1.6	67.3 ± 2.4	64.1 ± 0.6	60.4 ± 0.7
ContextPred	64.4 ± 1.3	64.3 ± 2.8	64.2 ± 0.5	61.0 ± 0.7
GraphCL	67.88 ± 0.85	68.0 ± 2.0	63.9 ± 0.6	60.9 ± 0.6
JOAO	64.43 ± 1.38	69.68 ± 0.67	62.40 ± 0.57	60.53 ± 0.88
JOAOv2	63.94 ± 1.59	70.22 ± 0.98	62.94 ± 0.48	59.97 ± 0.79
SimGRACE	70.25 ± 1.22	71.25 ± 0.86	63.36 ± 0.52	60.59 ± 0.96

Table 5: Performance under three adversarial attacks for GNN with different depth following the protocols in [7].

Methods	Two-Layer			Three-Layer			Four-Layer		
Methods	No Pre-Train	GraphCL	AT-SimGRACE	No Pre-Train	GraphCL	AT-SimGRACE	No Pre-Train	GraphCL	AT-SimGRACE
Unattack	93.20	94.73	94.24	98.20	98.33	99.32	98.87	99.00	99.13
RandSampling	78.73	80.68	81.73	92.27	92.60	94.27	95.13	97.40	97.67
GradArgmax	69.47	69.26	75.13	64.60	89.33	93.00	95.80	97.00	96.60
RL-S2V	42.93	42.20	44.86	41.93	61.66	66.00	70.20	84.86	85.29

Table 6: Comparisons of efficiency on three graph datasets. Note that we do not take the time for manual trial-anderrors of GraphCL into consideration. In fact, picking the suitable augmentations manually for GraphCL is much more time-consuming. All the three methods are evaluated on a 32GB V100 GPU.

Dataset	Algorithm	Training Time	Memory
	GraphCL	111s	1231 <i>MB</i>
PROTEINS	JOAOv2	4088 <i>s</i>	1403MB
	SimGRACE	46 s	1175 MB
	GraphCL	1033s	10199 <i>MB</i>
COLLAB	JOAOv2	10742 <i>s</i>	7303 <i>MB</i>
	SimGRACE	378 s	6547 MB
	GraphCL	917s	4135MB
RDT-B	JOAOv2	10278s	3935MB
	SimGRACE	280 s	2729 MB

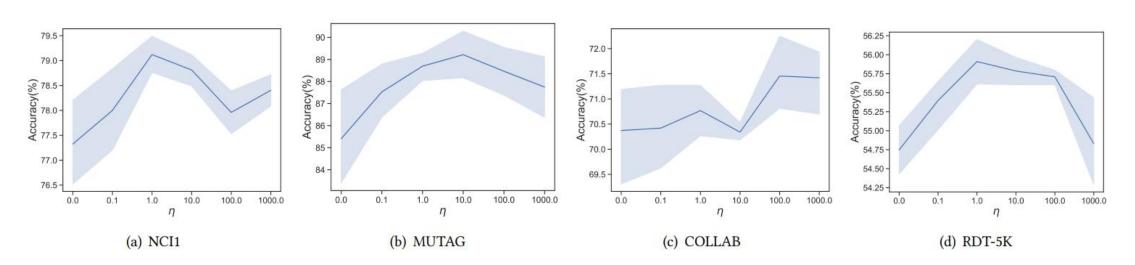


Figure 4: Performance versus magnitude of the perturbation (η) in unsupervised representation learning task.

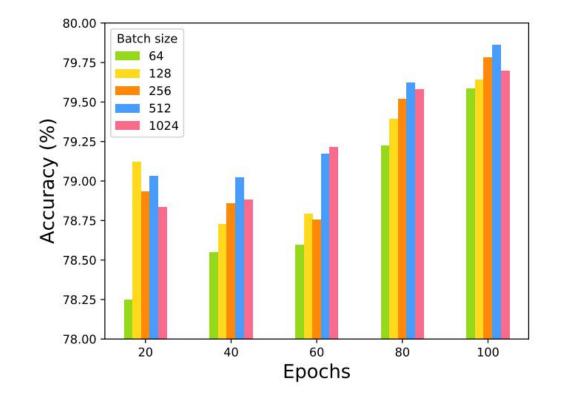


Figure 5: Performance of SimGRACE trained with different batch size and epochs on NCI1 dataset.

Thanks